

Data Server Subsystem System/Hardware Implementation Mark Huber

14 February 1995

System/Hardware Implementation Activities to Date

	Objective	Document	Results
Network Attached Storage (NAS) Study	Explore the ramifications at the device, operating system,	NAS Technology Study	Vendor RFI (Request for Information) on NAS.
	application, and subsystem level of implementing NAS.		Recommendations for prototyping. NAS requirements.
NAS RFI	Present to the vendor community the NAS problem and our requirements, and solicit product/prototyping information.	NAS Vendor RFI	Confirmation on COTS implementations. Possible prototyping agreements.
MR-AFS Proof of Concept (PCON)	Prototype of the Pittsburgh Super Computer (PSC) AFS Multi-Resident Extensions	MR-AFS PCON Plan and Final Report	Demonstrated a potentially viable solution for DSS local disk pooling.
Compression Study	Testing and analysis of various compression approaches on earth science data within the ECS system	Data Compression Study for the ECS Project	Recommendation for homogeneous, Archive limited compression at the device level
Permanent Data Storage Technologies	Recommend physical and logical approaches for storing the heterogeneous ECS data	Permanent Data Storage Technologies Study	Study ongoing based on better refinement of ECS data content and formats

Data Server Subsystem Subsystem Diagram

Data Server Subsystem Access Control and Management

- Administration Stations (AS)
 - Logical Data Server Administration and Configuration
 - Archive/Data Base Administration
- Access/Process Coordinators (APCs)
 - Access (Service) Point for External Clients
 - Supports Session Management
 - Directs Service Requests to Appropriate DSS components
 - Supports Electronic Distributions (Push/Pull)

- Provides Compute Resources (Configurable)

Data Server Subsystem Distribution and Ingest Peripheral Management

- Ingest/Distribution Staging Disks (Buffering)
 - Electronic Distribution Data from Data Repositories
 - Physical Distribution Data from Data Repositories
 - Physical Ingest Data from Ingest Peripherals
- Ingest/Distribution Peripherals
 - Hard Media Readers/Writers
 - Support Hard Media Ingest Clients in DSS
- HSM Host (If Required)
 - Virtualize Staging Disks into 2nd Tier Tapes
 - Allows for Longer/More "Pull" Residencies
 - Support for Remote Mount Access to Data

Data Server Subsystem Data Repository

- File Server Host
 - FSMS Host/Permanent Archive Manager
 - Large Storage Archive Device Control (i.e., tapes)
 - Data Routing and Resource Control
 - File/Large Data Based Storage
- Data Base Repository
 - DBMS Host/Permanent Archive Manager
 - Record/Small Data Based Storage
- Data Repository Robotics
 - Automated Media Handlers

- General Robotic Control for All File Servers

Data Server Subsystem Working Storage

- Primary Tier
 - Large Disk Pools (RAID)
 - High Speed Random Access
 - Initial "Landing Point" for all Incoming Data
 - Primary Location for Processing Subsystem Data Access

Secondary Tier

- Robotic Based Secondary Storage
- Relatively High Speed, Sequential Access
- Storage for Temporary Data
- Storage for Data with Known Upcoming Access Pattern
- Reduces Access on Data Repository Layer for Predictive Data Access
- Use of Data Retrieval Profile (DRP) and Intelligent Purging

Data Server Subsystem Scalability

- Segmentation of Architecture Allows Selective Increases in Paths That Become Bottlenecks
- Tiering of Inflow and Outflow Paths Allows for Virtualizing Resources
- NAS Concepts Enable Disk "Pools" to be Enlarged, thereby Benefiting More Than One Need
- Horizontal Scaling More Efficient Than Vertical (i.e., more, not bigger)

Data Server Subsystem Evolvability

- Segmentation of Architecture Allows for Technology Insertion with Minimal System Disruption
- Data Can Migrate Into New Storage Technologies, Techniques, and Locations Without the User Being Aware
- Creation of New Logical Data Servers Allow for Data to be Related in New Ways

Data Server Subsystem System Scenario

DATA SERVER SUBSYSTEM Access Control & Mgmt **ACMHW** Distribution Management Vorking Sto DIPH Media **DRPHW** Data Repository

Typical User Session

- 1 Access
- 2 Search
- 3 Browse
- 4 Electronic Acquire (Pull)

Data Server Subsystem System Scenario

Data Insert Operation

- 1 Data Arrival
- 2 Data Check
- 3 File Storage
- 4 Inventory/Metadata Update

Data Server Subsystem System Scenario

Physical Media Distribution

- 1 Same as Typical User Session
- 2 Media Generation Differs